Fab Lab House - Prefab Design for CNC Machine + Flexible Solar Panels







Video
Inside the house
Form follows energy
Project participants

“A solar house should be made from a solar material such as wood.”

Salvador Rueda, Urban Ecology Agency of Barcelona

“Rather than making solar houses, we can create self-sufficient habitats that are able to produce energy, food and other goods.”

Vicente Guallart, IAAC

“The Fab Lab House is developed on a network of fabrication laboratories using CNC machines to design and produce houses than can be customizable by the inhabitants, and at the same time adaptable to the environmental conditions”

Neil Gershenfeld, Center for Bits and Atoms, MIT




The Fab Lab House won Solar Decathlon Europe 2010 people’s choice award. In Madrid more than 20,000 people, who interested in solar house design, have visited the most liked and popular solar house in Spain, designed and manufactured by the Institute for Advanced Architecture of Catalonia (IAAC).

Prince Felipe of Spain said it looked like a wooden boat but the spectacular prefab solar house produced by Institute for Advanced Architecture of Catalonia was also called “peanut house” “cinnamon submarine,” “forest zeppelin” or “whale belly”.

The queues to visit the Fab Lab prefab house have greatly surprised the design team of the project: more than 20,000 visitors saw the solar prefab house during the ten days of Solar Decathlon Europe competition. The design team has been awarded with the people’s choice award. “This is a really important award for us – said Daniel Ibanez, Co-Director of the Fab Lab project – because compared to other solar houses we wanted to achieve a very human house. We wanted to make a house to live more than a technology showroom.”

However the Fab Lab house has also introduced significant innovations and state-of-the-art technologies such as the most efficient in the world flexible solar panels, designed and made with both American and Spanish technologies. This created a great interest among people and companies who visited the solar prefab house and it represents an important and significant breakthrough in the sustainable architecture and using of flexible solar panels in facades and roofs. “We wanted to overcome the idea that a solar house is a traditional house with solar panels on top and a lot of modern technology inside. Our project is a full solar house, a new generation of building that visitors have come to appreciate.” says the co-director of the Fab Lab project.

“The competition has been a great way to push the spirit of innovation in the field of architecture and construction in these times of crisis. We will propose that future editions will add tests where they value passive energy solutions in the design of buildings rather than the high consumption of energy to achieve comfort conditions. A solar house competition in Europe should overcome the American technical understanding, and bring values related to outdoor space and the social use of energy” says Vicente Guallart, Director of the Institute for Advanced Architecture of Catalonia.

So far the solar prefab house has already attracted the interest of the media and the public. The Fab Lab house has been put up for sale from € 45,000 + VAT. Various possible house configurations are defined: Villa (96 +96 sqm), House (60 +60 sqm), Studio (36 sqm), Shelter (24 sqm) and Cottage (12 sqm).

The Fab Lab project, which involved experts, engineers and architects from 20 countries, is being developed by the worldwide network of Fab Labs, The Center for Bits and Atoms from the Massachusetts Institute of Technology (MIT) and the Institute for Advanced Architecture of Catalonia (IAAC). The project participants include following companies: Schneider Electric, Endesa, Visoren, Santa & Cole, Roca, Vincon and Nani Marquina.


Advertisement

Ocean Community - Prefab Floating Home Concept

Red Dot Award 2019 Winner







Design: Wojciech Morsztyn, Poland

In the next 10 to 15 years, rising sea levels could bring irreplaceable changes to our environment. Ocean Community creates mobile domestic naval units and transforms the ocean into a habitable space. The creation of these new structures will serve as fully functional living spaces connected with existing land infrastructure so that new ocean communities become a natural extension of coastal cities. Small floating and sailing modules are located 800m from the coastlines, close enough for everyday life on land.




This future mobility concept is a fully autonomous system that easily provide facilities similar to that on land. Autonomous storage modules are created in the stationary centre; they can be easily released and attached to the units by the requested users. Another advantage of the Ocean Community system is its ability to harness sustainable energy such as water, sun and wind. Ocean Community could also be used in the commercial market such as hotels, touristic spots and other habitats.

How to Make Your Prefab Small Home Layout Feel Bigger







It seems that a growing trend among homeowners is to live in a smaller space. Gone are the days when the majority of homeowners longed for huge homes. Today’s homeowners prefer smaller spaces that require less time and expense for upkeep. However, even though the trend is to go smaller when it comes to home size, there is still a significant need to maximize the space that one has.

Prefab Modular Home Additions / Extensions











Prefab Modular Emergency Housing, NYC, USA








Floor plans
Construction
About Garrison Architects
About Mark Line Industries
About NYC Emergency Management
About American Manufactured Structures and Services (AMSS)

Design Garrison Architects
Deploy time 15 hours
Location NYC
Year 2015

Description by architects

Developed for the New York City Office of Emergency Management, Garrison Architects was hired by American Manufactured Structures and Services (AMSS) to design amodular post-disaster housing prototype for displaced city residents in the event of a catastrophic natural or manmade disaster. The multi-story, multi-family units can be deployed in less than 15 hours, in various arrangements calibrated for challenging urbanconditions.




This prototype is preceded by more than 6 years of research by the City of New York into emergency housing,” says James Garrison, Principal of Garrison Architects. “Aside from the basics of providing shelter after a disaster, the prototype is innovative because it allows residents to remain within their communities instead of being displaced for months, or even years. “Shelter in place” allows residents to maintain their support networks - their friends and their families. Keeping neighborhoods intact is crucial for successful rebuilding.”

The aim is to create a blueprint for post-disaster housing by utilizing the latest construction technology in conjunction with stringent requirements for safety, sustainability, durability, and universal design. The modules are infinitely flexible: they can be deployed in vacant lots, private yards, or public spaces. When needed, the modules are trucked to a site, craned into place, and plugged into utilities.

“The beauty of the units lies in their inherent flexibility. They can be stacked like legos to create row housing, or they can be interspersed between existing homes and structures,” says Garrison. “These modules aren’t just for New York City - they were designed to meet the strictest zoning requirements in the US, meaning they can be quickly deployed to any corner of the country.”

For the prototype, a total of 5 modules were fabricated in Indiana by Mark Line Industries. They were then trucked to NYC and installed onsite by American Manufactured Structures and Services, general contractor for the project.

With 1- and 3-bedroom configurations, every unit features a living area, bathroom, fully equipped kitchen and storage space. Units are built with completely recyclable materials, cork floors, zero formaldehyde, a double-insulated shell, and floor-to-ceiling balcony entry doors with integrated shading to lower solar-heat gain, provide larger windows, and add more habitable space. Units can be equipped with photovoltaic panels, which will not only alleviate pressure on the city grid, but also ensure the units are self-sustaining.




The prototype will remain on the corner of Cadman Plaza East and Red Cross Place for one to two years, undergoing occupancy tests by NYU Poly and Pratt. Guests will be invited to live in the units for 5-day intervals to fully explore their functionality. Jim Garrison continues: “We spent months honing all of the technical details for the prototype. Now it is time to investigate the intricate details of living in the units full time.” 2015


Modular Prefab Homes by Modscape, Australia







About Modscape
Materials and Engineering Systems Manufacturers




Solar House - Solar Power Off-the-Grid Prefab Home

Winner of Solar Decathlon 2007







Plan
Interior
Exterior
Project participants
Innovative materials manufacturers

Design: Students of the TU Darmstadt, Department of Design and Energy Efficient Construction, Prof. Manfred Hegger (Project Management)
Project: Solar House
Location: El-Lissitzky-Straße 3, 64287 Darmstadt, Hesse
Year: 2007
Client: TU Darmstadt (+ operator + user)
Gross floor area: 72 m²
Heated net floor area: 50 m²
Gross volume: 182 m³
Heating requirement (EnEV): 12,00 kWh / m²a
Usable area (according to EnEV): 58 m²
A / V ratio: 1.15 m-1
Architecture and engineering systems: thermal insulation, façade systems, glazing + windows, daylight planning, ventilation + heat recovery, active cooling, regenerative + passive cooling,
thermally activated component systems, heat pump, heat / cold storage, control engineering, plant management, building automation, solar thermal energy, photovoltaics, biomass utilization, building materials ecology




The solar power off-the-grid prefab home "Solar House" designed by students of the TU Darmstadt has won the international competition "Solar Decathlon 2007" for the most attractive and energy-efficient solar house. The energy self-sufficient prefab home was built on the campus of the TU Darmstadt and transported to the USA after completion.

The house is a wooden lightweight construction with low heat storage mass compared to massive new buildings. In order to combine maximum living comfort with the lowest energy consumption, a compact and highly insulated building envelope was chosen. During the hot summer days, the shading of the windows help to avoid overheating the interiors. The shading elements consist of the southern roof overhang and the lamellar shell of oak, which opens and closes when needed.

Plasterboard with integrated phase change material (PCM) compensate for heat peaks. They store the heat energy generated during the day and release it at night. Per volume unit, the material can store six times as much heat as concrete and thus acts as a latent heat storage. Once the wax contained in the PCM has completely melted, no further heat can be absorbed. Cooling can be achieved by cross-ventilation between the north and south sides during the night or by passive cooling system of the PV modules on the roof. For this purpose, a built-in double soil water reservoir is used, which is connected to a heat exchanger. On the opposite side of the heat exchanger is the cooling circuit, which consists of capillary tube mats in the ceiling. These absorb the heat of the phase change material and transport it into the water tank. This allows the PCM to actively cool constantly.

FutureHAUS - Smart, Solar Energy, Prefab Modular Home for Sustainable Development

Winner of Solar Decathlon Middle East 2018







Video
Construction
About Solar Decathlon Middle East

Virginia Tech’s project participants:

College of Science
College of Engineering
Pamplin College of Business
Department of Computer Science
Myers-Lawson School of Construction
Center for Human-Computer Interaction
College of Architecture and Urban Studies
College of Liberal Arts and Human Sciences


The prefabricated modular design of the smart solar energy prefab modular home for sustainable development allowed FutureHAUS to be constructed in just two days. Following the two week construction period, a ten day competition period challenged the team to complete tasks simulating real-life tasks, give tours to the public and juries, and perform tasks like hosting dinner parties and driving electric vehicles. International juries scored the house on criteria including Architecture, Sustainability, Innovation, Energy Efficiency and Engineering and Construction.




In addition to winning the competition, FutureHAUS Dubai took home the following trophies:


  • First Place in Architecture
  • First Place in House Functioning
  • First Place in Sustainable Transportation
  • First Place in Create Solutions
  • Second Place in Interior Design
  • Second Place in Sustainability
  • Second Place in Innovation
  • Third Place in Engineering and Construction
  • Third Place in Energy Efficiency Measures
  • Third Place in Comfort Conditions


Concept

Inspired by the best production practices of the automotive and airplane industry, the FutureHAUS (smart solar energy prefab modular home for sustainable development) explores the process of prefabrication to deliver modular structures that integrate smart technologies, energy efficient systems, and new materials. Our innovative prototype proposes a factory produced, energy-positive, smart home. The goal is to not only invent the future of housing with the integration of smart technologies, but also invent the future of how they will be built.

Housing is about to get a whole lot better

In recent years, innovations in digital technologies, such as smartphones, computers and robotics for fabrication in construction have revolutionized the way we live, work and build. The presence of technology in everyday life has become so engrained that it would be impossible to function today without it - as we have fully embraced the expectation of convenience and support that high performance technology offers. While present cutting-edge technology has been well integrated into the design and manufacturing most high-performance products like aircraft, automobiles, appliances and computers, the construction industry, by contrast, has been slow if not resistant to change in its operations.

With the FutureHAUS, the research team is challenging the construction industry by demonstrating the use of advanced manufacturing processes to make an energy positive smart solar energy prefab modular home for sustainable development.


Prefab Glass Walls Store/Shop with Metal Frame







About Supra Design - Augusta Design

Project: Ribeirão Preto CASACOR Store
Design: Supra Design - Augusta Design
Architects: Mathe Benetti and Dariane Bertoni
Area: 30 m²
Year: 2018

The Ribeirão Preto CASACOR Store, signed by Supra Design office and operated by Augusta Design, is an interpretation of the annual theme of A Casa Viva. The structures of the construction of the commercial space were designed so that all the elements can be disassembled and reassembled in another place, in order to keep the architecture that follows alive and itinerant.




Architects Mathe Benetti and Dariane Bertoni bring industrial modernity to the atmosphere of space. Constructive materials transcend the walls and present themselves as resignified decorative elements. Scaffolding appears as bookshelves and other industrial materials, usually used as the basis of a work, are seen with the naked eye and dialogue with the objects selected by the store's curator.

At the CASACOR Shop by Augusta Design, the commercial space of only 30 m², glass walls add to the ambience and eliminate the feeling of confinement and allow the dialogue between internal and external areas at CASACOR Ribeirão Preto 2018.


SysHaus - 200 sqm Sustainable Prefab Home







About Arthur Casas

Architecture: Arthur Casas Design
Area: 200 sqm
Landscaping: Renata Tilli
Location: São Paulo, Brazil
Year: 2018
Photography: Filippo Bamberghi




Some say houses are made of brick;
Some say they are made of the relationship between spaces;
There are also those who say they are made of mishaps.
We believe that home is time and space.
It is to enjoy time in the best space.

Arthur Casas introduces the SysHaus sustainable prefab home modular system at its pre-launch at CASACOR São Paulo 2018. The technology developed by his office made it possible to build a high-end home in less than a month, with virtually zero waste and water consumption. Each part of the project has been designed exclusively on the basis of needs and specifications, extremely efficiently and functionally, without debris and with reduced execution time.

With 200 m², the structure of pillars, beams and steel screws does not require foundation and concreting. Everything is docked from floor to ceiling. About 90% of the components come from the bespoke factory. In addition, 100% of the materials used are recyclable, and there is a green roof, which naturally contributes to thermal and acoustic comfort, giving the utmost respect to nature in all construction processes.

Generous openings allow the sustainable prefab home to be crossed by ventilation and natural light, reducing energy consumption with lighting and air conditioning. The furniture was designed in modules, ie, just like the structure of the sustainable prefab home, can be assembled in another location. Other pieces of furniture, utilities, finishes and even accessories, such as jewelry, were designed by Arthur in partnership with large companies and national industries - most of them being launched. The house's landscaping is by Renata Tilli, who opted for species that adapt to the climate of any region.

The constructive method will also be commercialized including sustainable everyday practices. In all SysHaus sustainable prefab homes will be installed: the rainwater catchment and reuse mechanism; a biodigestion system that transforms organic waste into gas for use in the fireplace and kitchen, and fertilizer for use in the garden; and sockets for electric vehicles. The customer can also opt for photovoltaic panels, which, through their intelligent monitoring system, make the most of energy. It is estimated that construction can be completed within six months from conception to key delivery.

Factory installed eco-friendly systems

Using technology, engineering and design, SysHaus makes this thinking an effective practice. Its innovative construction method allows the assembly of the pieces intended for each of its spaces to be done without waste generation and excessive consumption of natural resources, whose waste is quite common in conventional constructions. In addition, 100% of the materials used are recyclable, and there is the option of green roofing, which naturally contributes to thermal and acoustic comfort, with the utmost respect for nature in all construction processes.




Sustainable daily practices are also achieved through three items, installed in all sysHaus houses: the mechanism for capturing and reusing rainwater; a biodigestion system that transforms organic waste into gas for use in the fireplace and kitchen, and fertilizer for use in the garden; and sockets for electric vehicles. In addition, photovoltaic panels can also be installed, which, through their intelligent monitoring system, make the most of energy and generate zero cost on the bill.

Sustainability for SysHaus is more than a philosophy; It is an integral part of everything you do, both in designing your production process and applying these practices at every stage of your projects.