Prefab Modular Home Additions











Advertisement

Prefab Modular Emergency Housing, NYC, USA








Floor plans
Construction
About Garrison Architects
About Mark Line Industries
About NYC Emergency Management
About American Manufactured Structures and Services (AMSS)

Design Garrison Architects
Deploy time 15 hours
Location NYC
Year 2015

Description by architects

Developed for the New York City Office of Emergency Management, Garrison Architects was hired by American Manufactured Structures and Services (AMSS) to design amodular post-disaster housing prototype for displaced city residents in the event of a catastrophic natural or manmade disaster. The multi-story, multi-family units can be deployed in less than 15 hours, in various arrangements calibrated for challenging urbanconditions.




This prototype is preceded by more than 6 years of research by the City of New York into emergency housing,” says James Garrison, Principal of Garrison Architects. “Aside from the basics of providing shelter after a disaster, the prototype is innovative because it allows residents to remain within their communities instead of being displaced for months, or even years. “Shelter in place” allows residents to maintain their support networks - their friends and their families. Keeping neighborhoods intact is crucial for successful rebuilding.”

The aim is to create a blueprint for post-disaster housing by utilizing the latest construction technology in conjunction with stringent requirements for safety, sustainability, durability, and universal design. The modules are infinitely flexible: they can be deployed in vacant lots, private yards, or public spaces. When needed, the modules are trucked to a site, craned into place, and plugged into utilities.

“The beauty of the units lies in their inherent flexibility. They can be stacked like legos to create row housing, or they can be interspersed between existing homes and structures,” says Garrison. “These modules aren’t just for New York City - they were designed to meet the strictest zoning requirements in the US, meaning they can be quickly deployed to any corner of the country.”

For the prototype, a total of 5 modules were fabricated in Indiana by Mark Line Industries. They were then trucked to NYC and installed onsite by American Manufactured Structures and Services, general contractor for the project.

With 1- and 3-bedroom configurations, every unit features a living area, bathroom, fully equipped kitchen and storage space. Units are built with completely recyclable materials, cork floors, zero formaldehyde, a double-insulated shell, and floor-to-ceiling balcony entry doors with integrated shading to lower solar-heat gain, provide larger windows, and add more habitable space. Units can be equipped with photovoltaic panels, which will not only alleviate pressure on the city grid, but also ensure the units are self-sustaining.




The prototype will remain on the corner of Cadman Plaza East and Red Cross Place for one to two years, undergoing occupancy tests by NYU Poly and Pratt. Guests will be invited to live in the units for 5-day intervals to fully explore their functionality. Jim Garrison continues: “We spent months honing all of the technical details for the prototype. Now it is time to investigate the intricate details of living in the units full time.” 2015


Modular Prefab Homes by Modscape, Australia







About Modscape
Materials and Engineering Systems Manufacturers




Solar House - Solar Power Off-the-Grid Prefab Home

Winner of Solar Decathlon 2007







Plan
Interior
Exterior
Project participants
Innovative materials manufacturers

Design: Students of the TU Darmstadt, Department of Design and Energy Efficient Construction, Prof. Manfred Hegger (Project Management)
Project: Solar House
Location: El-Lissitzky-Straße 3, 64287 Darmstadt, Hesse
Year: 2007
Client: TU Darmstadt (+ operator + user)
Gross floor area: 72 m²
Heated net floor area: 50 m²
Gross volume: 182 m³
Heating requirement (EnEV): 12,00 kWh / m²a
Usable area (according to EnEV): 58 m²
A / V ratio: 1.15 m-1
Architecture and engineering systems: thermal insulation, façade systems, glazing + windows, daylight planning, ventilation + heat recovery, active cooling, regenerative + passive cooling,
thermally activated component systems, heat pump, heat / cold storage, control engineering, plant management, building automation, solar thermal energy, photovoltaics, biomass utilization, building materials ecology




The solar power off-the-grid prefab home "Solar House" designed by students of the TU Darmstadt has won the international competition "Solar Decathlon 2007" for the most attractive and energy-efficient solar house. The energy self-sufficient prefab home was built on the campus of the TU Darmstadt and transported to the USA after completion.

The house is a wooden lightweight construction with low heat storage mass compared to massive new buildings. In order to combine maximum living comfort with the lowest energy consumption, a compact and highly insulated building envelope was chosen. During the hot summer days, the shading of the windows help to avoid overheating the interiors. The shading elements consist of the southern roof overhang and the lamellar shell of oak, which opens and closes when needed.

Plasterboard with integrated phase change material (PCM) compensate for heat peaks. They store the heat energy generated during the day and release it at night. Per volume unit, the material can store six times as much heat as concrete and thus acts as a latent heat storage. Once the wax contained in the PCM has completely melted, no further heat can be absorbed. Cooling can be achieved by cross-ventilation between the north and south sides during the night or by passive cooling system of the PV modules on the roof. For this purpose, a built-in double soil water reservoir is used, which is connected to a heat exchanger. On the opposite side of the heat exchanger is the cooling circuit, which consists of capillary tube mats in the ceiling. These absorb the heat of the phase change material and transport it into the water tank. This allows the PCM to actively cool constantly.

FutureHAUS - Smart, Solar Energy, Prefab Modular Home for Sustainable Development

Winner of Solar Decathlon Middle East 2018







Video
Construction
About Solar Decathlon Middle East

Virginia Tech’s project participants:

College of Science
College of Engineering
Pamplin College of Business
Department of Computer Science
Myers-Lawson School of Construction
Center for Human-Computer Interaction
College of Architecture and Urban Studies
College of Liberal Arts and Human Sciences


The prefabricated modular design of the smart solar energy prefab modular home for sustainable development allowed FutureHAUS to be constructed in just two days. Following the two week construction period, a ten day competition period challenged the team to complete tasks simulating real-life tasks, give tours to the public and juries, and perform tasks like hosting dinner parties and driving electric vehicles. International juries scored the house on criteria including Architecture, Sustainability, Innovation, Energy Efficiency and Engineering and Construction.




In addition to winning the competition, FutureHAUS Dubai took home the following trophies:


  • First Place in Architecture
  • First Place in House Functioning
  • First Place in Sustainable Transportation
  • First Place in Create Solutions
  • Second Place in Interior Design
  • Second Place in Sustainability
  • Second Place in Innovation
  • Third Place in Engineering and Construction
  • Third Place in Energy Efficiency Measures
  • Third Place in Comfort Conditions


Concept

Inspired by the best production practices of the automotive and airplane industry, the FutureHAUS (smart solar energy prefab modular home for sustainable development) explores the process of prefabrication to deliver modular structures that integrate smart technologies, energy efficient systems, and new materials. Our innovative prototype proposes a factory produced, energy-positive, smart home. The goal is to not only invent the future of housing with the integration of smart technologies, but also invent the future of how they will be built.

Housing is about to get a whole lot better

In recent years, innovations in digital technologies, such as smartphones, computers and robotics for fabrication in construction have revolutionized the way we live, work and build. The presence of technology in everyday life has become so engrained that it would be impossible to function today without it - as we have fully embraced the expectation of convenience and support that high performance technology offers. While present cutting-edge technology has been well integrated into the design and manufacturing most high-performance products like aircraft, automobiles, appliances and computers, the construction industry, by contrast, has been slow if not resistant to change in its operations.

With the FutureHAUS, the research team is challenging the construction industry by demonstrating the use of advanced manufacturing processes to make an energy positive smart solar energy prefab modular home for sustainable development.


Prefab Glass Walls Store/Shop with Metal Frame







About Supra Design - Augusta Design

Project: Ribeirão Preto CASACOR Store
Design: Supra Design - Augusta Design
Architects: Mathe Benetti and Dariane Bertoni
Area: 30 m²
Year: 2018

The Ribeirão Preto CASACOR Store, signed by Supra Design office and operated by Augusta Design, is an interpretation of the annual theme of A Casa Viva. The structures of the construction of the commercial space were designed so that all the elements can be disassembled and reassembled in another place, in order to keep the architecture that follows alive and itinerant.




Architects Mathe Benetti and Dariane Bertoni bring industrial modernity to the atmosphere of space. Constructive materials transcend the walls and present themselves as resignified decorative elements. Scaffolding appears as bookshelves and other industrial materials, usually used as the basis of a work, are seen with the naked eye and dialogue with the objects selected by the store's curator.

At the CASACOR Shop by Augusta Design, the commercial space of only 30 m², glass walls add to the ambience and eliminate the feeling of confinement and allow the dialogue between internal and external areas at CASACOR Ribeirão Preto 2018.


SysHaus - 200 sqm Sustainable Prefab Home







About Arthur Casas

Architecture: Arthur Casas Design
Area: 200 sqm
Landscaping: Renata Tilli
Location: São Paulo, Brazil
Year: 2018
Photography: Filippo Bamberghi




Some say houses are made of brick;
Some say they are made of the relationship between spaces;
There are also those who say they are made of mishaps.
We believe that home is time and space.
It is to enjoy time in the best space.

Arthur Casas introduces the SysHaus sustainable prefab home modular system at its pre-launch at CASACOR São Paulo 2018. The technology developed by his office made it possible to build a high-end home in less than a month, with virtually zero waste and water consumption. Each part of the project has been designed exclusively on the basis of needs and specifications, extremely efficiently and functionally, without debris and with reduced execution time.

With 200 m², the structure of pillars, beams and steel screws does not require foundation and concreting. Everything is docked from floor to ceiling. About 90% of the components come from the bespoke factory. In addition, 100% of the materials used are recyclable, and there is a green roof, which naturally contributes to thermal and acoustic comfort, giving the utmost respect to nature in all construction processes.

Generous openings allow the sustainable prefab home to be crossed by ventilation and natural light, reducing energy consumption with lighting and air conditioning. The furniture was designed in modules, ie, just like the structure of the sustainable prefab home, can be assembled in another location. Other pieces of furniture, utilities, finishes and even accessories, such as jewelry, were designed by Arthur in partnership with large companies and national industries - most of them being launched. The house's landscaping is by Renata Tilli, who opted for species that adapt to the climate of any region.

The constructive method will also be commercialized including sustainable everyday practices. In all SysHaus sustainable prefab homes will be installed: the rainwater catchment and reuse mechanism; a biodigestion system that transforms organic waste into gas for use in the fireplace and kitchen, and fertilizer for use in the garden; and sockets for electric vehicles. The customer can also opt for photovoltaic panels, which, through their intelligent monitoring system, make the most of energy. It is estimated that construction can be completed within six months from conception to key delivery.

Factory installed eco-friendly systems

Using technology, engineering and design, SysHaus makes this thinking an effective practice. Its innovative construction method allows the assembly of the pieces intended for each of its spaces to be done without waste generation and excessive consumption of natural resources, whose waste is quite common in conventional constructions. In addition, 100% of the materials used are recyclable, and there is the option of green roofing, which naturally contributes to thermal and acoustic comfort, with the utmost respect for nature in all construction processes.




Sustainable daily practices are also achieved through three items, installed in all sysHaus houses: the mechanism for capturing and reusing rainwater; a biodigestion system that transforms organic waste into gas for use in the fireplace and kitchen, and fertilizer for use in the garden; and sockets for electric vehicles. In addition, photovoltaic panels can also be installed, which, through their intelligent monitoring system, make the most of energy and generate zero cost on the bill.

Sustainability for SysHaus is more than a philosophy; It is an integral part of everything you do, both in designing your production process and applying these practices at every stage of your projects.


NeighborHub - Sustainable Solar Power Prefab House

Winner of Solar Decathlon 2017








Team
Coordination
Groups and Tasks
About Solar Decathlon
About Swiss Living Challenge
About University of Friborg (UNIFR)
About Geneva School of Art and Design (HEAD)
About University of Applied Sciences of Freiburg (HEIA-FR)
About Swiss Federal Institute of Technology Lausanne (EPFL)




Project

The aim of the Swiss Living Challenge project is to encourage people to reduce their energy consumption and ultimately preserve the country's natural resources.

How are we going to do it? To really reduce our energy consumption, we must act on a daily basis, from our mobility to our food. The Swiss Living Challenge project (which brings together 4 universities) offers alternatives that suggest to the inhabitants of a district to adopt sustainable features thanks to its sustainable solar power prefab house, the NeighborHub.

NeighborHub

The team has built a sustainable solar power prefab house for a neighborhood, initiating changes and integrable in different urban areas. Named NeighborHub - this space aims to converge the inhabitants of a neighborhood and imagine with them solutions to consume less and better.

We must act together to reduce our consumption. The NeighborHub will be a place for meetings and exchanges where activities will be held and where we will share moments of life. There will be tools and alternatives for seven levers of action we can act on:


  • energy
  • water management
  • waste management
  • mobility
  • food
  • materials
  • biodiversity


Local residents will benefit from advice, interactive activities and conferences around these themes. The NeighborHub is also architecturally designed to adapt to all these moments of sharing with a large multifunctional space.

By changing our habits today, we can change the world of tomorrow.



7 Levers of Action

Energy

The electricity production is provided by 29 photovoltaic solar panels arranged only in frontage. Two batteries make it possible to manage the production and consumption flows to ensure a supply corresponding to needs of sustainable solar power prefab house inhabitants.

Water Management

With regard to water management, the aim of the Swiss Living Challenge is not simply to reduce its consumption. Indeed, it is essential to differentiate the various qualities of water that enters and leaves a sustainable solar power prefab house, assigning it the proper use or valuation. For example, the rainwater collected on the roof is fed to washing machine.

Biodiversity

The vegetated roof and the phytopurification basin serve as habitat for flora and fauna. In addition, vertical greenhouses integrated in the structure of the doors welcome shoots of local plants. One of the most important energy consumption items is mobility.

Mobility

A change in our habits supported by the provision of shared electric cars, bicycles or tricycles would reduce our consumption in this area.

Waste management

As far as waste management is concerned, the aim is first of all to reduce waste and this goes through choices such as shopping at the market and buying vegetables without packaging. Since zero waste is not so easy to achieve, product reuse and recycling remain important points in the economy of our resources.

Materials

Choosing to be surrounded by healthy materials that do not release harmful particles and promote good air quality is important for our health but also for the environment. The entire structure of the sustainable solar power prefab house is made of wood. In addition, the kitchen worktop is made of 75% recycled materials such as porcelain, ceramic, glass or mirror.

Food

In the NeighborHub, a common kitchen is available to the inhabitants. They can organize courses to share their culinary knowledge and together find tips to consume more sustainable. Around the NeighborHub there are also vegetable gardens where gardening classes take place.


Description from Solar Decathlon

The bar was set sky high from the very start. As soon as the Swiss Living Challenge team set foot in the Solar Decathlon arena when scouting the SDE14 event in Versailles, they knew; they could go the extra mile. And they did. One house for a single family? Why not for a whole community? The Swiss Team thrived, and three years later they won first place during the SD17 competition in Denver, USA. The secret to their success? A big part was the social aspect, which was key to the NeighborHub project.

The Swiss Team’s NeighborHub sustainable solar power prefab house was immediately identified as an instigator of change. The notion of a communal space where neighbours are inspired toward energy-efficiency & behavioural change was embraced by visitors touring the NeighbourHub at the SD17 event, all in the name of resource-responsibility. In this process of learning by doing, the emphasis on human interaction to incite change reflected the collaborative and integral character of both the Swiss team and the NeighborHub itself. “Innovation is about integration on all sorts of levels,” says former decathlete Florian Meyer. He was part of the Swiss Team’s engineering group and worked on the electrical systems of the house.

To the Neighborhood

It took total dedication and a fundamental joint effort to turn the NeighborHub concept into reality. The Swiss sustainable solar power prefab house was designed by a total of 250 students and professors from four schools: École Polytechnique Fédérale de Lausanne, the School of Engineering and Architecture of Fribourg, the Geneva School of Art and Design, and the University of Fribourg. “The connection between team members was very strong,” Florian said. Besides the hands-on approach, what drew him to the project was the interdisciplinary spirit of the team: “It was incredible to work with such a diverse team from beginning to end.” In addition, The Swiss Living Challenge team was supported by 150 teaching staff members from industry and academia. Recently, Florian and his former team members joint forces again as the NeighborHub came back to life in April, 2018 at the smart living lab of blueFACTORY in Fribourg, Switzerland. “We built the NeighborHub such that it would be robust to adaptations in various contexts and urban settings,” Florian explains.

Vegetated Roof

He continues, explaining that the NeighborHub might not include the most state-of-the art technologies; however, the ways in which all elements come together are unique, maybe even cutting edge: the Swiss Team worked toward a seamless integral system of technology and design. One of the NeighborHub sustainable solar power prefab house’s eye-catching features is its vegetated roof, free of solar panels, designed to stimulate biodiversity in urban settings. The roof houses very particular nectar-giving plants that provide sustenance to bees, whose alarming decline in numbers is currently a pressing EU issue. Simultaniously, the roof absorbs rainwater via its plants and gathers it elsewhere for use in certain household appliance such as the washing machine. Wastewater from such appliances is treated in a phyto-purification basin next to the NeighborHub where reeds absorb a large quantity of pollutants out of this wastewater. Purified wastewater can then be infiltrated in the ground, for example, to water other plants. It is a beautiful example of how the Swiss Team aimed to create closed systems to maximise efficiency in and around the NeighborHub sustainable solar power prefab house.

Snow Proof

Instead of placing solar panels on the roof, the Swiss Team ingeniously attached their photovoltaic solar panels to the facades and doors of the NeighborHub sustainable solar power prefab house. They designed the doors to open vertically like a garage door where the wall rotates towards the exterior and then towards the top. As such, solar panels can adapt their orientation according to the position of the sun, allowing the sustainable solar power prefab house to capture more energy as the seasons change.

This means that in winter, the external walls remain closed in vertical position to accommodate the solar panels to the lower position of the sun. During the SD17 Competition this characteristic proved itself exeptionally useful when falling snow in Denver had no effect on the effectivity of the NeighborHub’s solar panels. In summer, the external walls remain open and the solar panels are inclined at a 35-degree angle to maximize the high position of the sun. In this configuration, the wall creates a covered terrace that goes all around the prefab house, enabling the NeighborHub to capture solar energy while simultaneously providing shade to the people moving around the house. As such, design and optimal comfort for the community go hand in hand.




Talk to the Neighborhub

As for Florian, he knows the business of making systems and devices communicate with each other to exchange information, and developed the ‘Talk to the NeighborHub’ app. The application monitors and integrates all sorts of technological house data, which is then translated into engaging information that its users can comprehend. “If all lights in the NeighborHub prefab house are switched on, the app prompts the question whether it is necessary to keep them on,” Florian explains. The above and many other aspects of the NeighborHub solar power prefab house’s design makes the community sustainable house an inspiring meeting place for local residents to co-create solutions for consuming both less and better.

In the coming five years, the NeighborHub prefab house opens up room at the smart living lab of Freiburg for a range of activities such as eco-friendly cooking classes with local foods, bike repair workshops, gardening lessons or coworking days and other social gatherings. As such, the NeighborHub solar power house carries on as a social hub in Switzerland to work together towards sustainable solutions on energy, water management, biodiversity, waste management, mobility, materials, and food.


Prefabricated Houses and Modularity - Advantages and Disadvantages of Modular Construction






Prefabricated House - History, Construction, Advantages, Disadvantages
Modularity
Modular Construction

Prefabricated House - History, Construction, Advantages, Disadvantages 


History of Prefab Construction
Prefab Method of Construction
Prefabricated Houses Advantages
Prefabricated Houses Disadvantages

The term prefabricated house is generally used to refer to a house that - at least in parts - is prefabricated at the factory and delivered to the site.


According to the Austrian Standards Institute definition, a prefabricated house is a structure built on a prepared substructure consisting of prefabricated, floor-to-ceiling large-panel conversion elements, room cells and prefabricated ceiling and roof elements manufactured in production sites independent of weather conditions.





This standard applies to residential buildings (detached and semi-detached houses, terraced houses, multi-storey residential buildings), office buildings, kindergartens, schools and multi-purpose houses and regardless of the building materials used (wood, concrete, brick). This standard does not cover structures constructed with non-storey but prefabricated single structural elements, such as houses made of brick, aerated concrete, hollow blocks or wooden block house planks, or which do not conform to a specific minimum level of performance.


B10 Prefab House + Garage for Electric Car + Sustainable Energy






Rendering
Floorplans
Construction
About Werner Sobek
About E-Lab Projekt GmbH
About AlphaEOS AG and B10 Future Living Lab
Project participants

Architecture: Werner Sobek, E-Lab Projekt GmbH
Builder: E-Lab Projekt GmbH
Manufacturers: Sky-Frame, CLIPSO, Leicht
Testing and research: AlphaEOS AG and B10 Future Living Lab
Location: Stuttgart, Germany
Year: 2014
Photography: Zooey Braun

Vision

At the beginning of the project was the vision of an innovative and sustainable prefab house, which not only generates all the energy needed in-house from sustainable sources and that can be 100% recycled into the material cycle. The building should also create a link between the built environment and electromobility - and show ways of optimally coordinating energy generation and energy consumption at the local level through a smart grid.

Context

The prefab house is located at Bruckmannweg 10, in the heart of the famous Weissenhofsiedlung in Stuttgart. Built in 1927 within a few months, this settlement on the Killesberg was like a revolution in construction. The designs of various world-famous architects showed how we can build and live in the future. Parts of the Weissenhofsiedlung were destroyed and rebuilt after the war - except for the property in the Bruckmannweg, which lay fallow since 1945. Here, for a period of three years, appears B10, a new forward-looking building that shows how innovative materials, designs and technologies can sustainably improve our design environment.





Project

The research project - named "B10" after its location in Bruckmannweg 10 - is an active house. Thanks to a sophisticated energy concept and self-learning building control, it generates twice as much energy itself - from sustainable sources. With the surplus gained, two electric cars and the listed building of the architect Le Corbusier (since 2006 the home of the Weissenhof Museum) have been supplied. Upon completion of the research project, the prefab house will be completely dismantled, rebuilt elsewhere or 100% recycled. The property is then returned to the city of Stuttgart in its original condition.

In an initial phase of use, interested visitors can find out more about the energy concept and the applied construction technology in B10 prefab house. In the second phase of use, the building will be inhabited free of charge by two students. During the entire project period, energy generation and energy consumption as well as a large number of other highly relevant data for building research are continuously measured and scientifically evaluated at the University of Stuttgart.

Builder

The developer of the project is E-Lab Projekt GmbH, a project company of the non-profit Stuttgart Institute of Sustainability Foundation e.V. (SIS). SIS is a non-profit association. It supports and develops methods and technologies for sustainable construction. SIS combines science with industry and crafts. The association was founded in 2011 and has its headquarters in Stuttgart. Further information can be found at http://www.sis-stiftung.de/verein.php

Modular Construction in Perfection - Modular Homes, Multi-Storey Apartment Buildings and Offices by Variahome, Germany

Modular Construction in Perfection






Variahome stands for sophisticated, architecturally high-quality, turnkey buildings in modular solid wood construction. The future-oriented design of Variahome provides the clients with a wealth of advantages.

Made in the tradition of alpine wood craftsmanship Variahome combines tradition with modernity.

Industrially prefabricated Variahome room modular systems are guarantors for short construction time, highest quality, a particularly aesthetic appearance and offer attractive purchase, financing, rental and leasing models for the commercial and municipal sector.


About Variahome

Modular Construction - Sustainable, Flexible, Turnkey

Shared living of young and old. More space for young families, singles, students, pensioners and the construction of low-cost apartments, this is multi-storey modular housing construction with Variahome.

Affordable housing has become an existential issue for millions of people in Germany. Young families no longer find affordable housing in many major cities. Retirees are forced out of their homes and neighborhoods where they have lived for decades. Who in a big city, for example nurse or bus driver is, who can afford in the city center no more housing. The market demands new flexible living concepts and Variahome has them.





If residential space is to be created quickly, Variahome offers a real alternative to conventional building with ecological, sustainable modular solutions with a prefabrication rate of 98% in the factory.

Benefits

Valuable, sustainable ecological architecture:

Good architecture is permanently valuable. The sooner we get involved in the planning, the more economical and precise the result.

Turnkey delivery and construction with fixed price and term guarantee. Variahome carries out the planning in partnership with client in dialogue in order to best capture client's requirements. So Variahome can implement your room and equipment program precisely.

Of course, Variahome meets all the requirements for fire protection, sound insulation and building physics. All legal standards, regulations and specifications are of course complied with. Even highest energy standards such as Passive or Plus energy modular buildings are possible.

Economical: The short construction time, the high flexibility in use and the adaptability to future requirements make the Variahome modular construction particularly economical. No matter whether you are planning barrier-free living space or are using subsidies for social housing or particularly efficient construction methods. Variahome with its experienced architects adapts the planning 100% to client's needs.

Flexible modular design freedom. With Variahome clients achieve the same freedom of design as they are used to from other building systems. Plaster, wood or brick facades are exactly the same as modern HPL facades. With this freedom in design, Variahome integrates their modular buildings into every urban environment.

Flexible and sustainable: you remain flexible even after installation. Adjustments to changing requirements are not a problem with modular design, as the inner walls are not static bearing and can therefore be moved or removed.

Healthy living with well-being guarantee: By using solid wood, which has a favorable effect on the room humidity and room temperature, Variahome creates a comfortable living atmosphere.

Feel-good apartments: In the interior, modular housing allows for a high degree of flexibility in layouts, since Variahome removes all static loads via the exterior walls. Variahome does not know the limitation of "load-bearing interior walls". So Variahome can realize flexible room concepts. When choosing the ceilings and wall surfaces as well as the floor coverings client has free choice. Variahome realizes living rooms, kitchens and bathrooms in the highest quality and execution.

Prefab Modular Villa, Collonges, Switzerland






Floorplans
About Pierre-Alain Dupraz

Architecture: Pierre-Alain Dupraz
Location: Collonges, Switzerland
Year: 2012
Photos: Thomas Jantscher

Description by the project team 

Located at the base of the mountain overlooking the Geneva basin, the 'house in Collonges', designed by the Swiss office Pierre-Alain Dupraz Architects. Built for a single family, the prefab modular villa is constructed from a series of rectangular prefabricated concrete boxes, paired and stacked one on the side - and on top - of the other, in order to shape the dwelling to the sloping landscape and accommodate programmatic needs.





The south axis rests on a geographic shelf where are the entrance, dining, kitchen, living room and master bedroom areas. The children's bedrooms are found on the lower level, embedded in the slope, overlooking the valley. The neutral gray of the exposed concrete facade is interrupted by light frames and square wooden windows, allowing the prefab modular villa to naturally blend in with its surroundings in green summers and white winters.

Prefab Modular Home in Ocean Beach, San Diego, California





Three on Abbott is a development of three prefabricated, detached homes on the corner of Voltaire & Abbott streets in Ocean Beach. The homes are located near San Diego's best attractions. The project is sensitive to the area's wants and wishes, conforming by-right to all local zoning and ordinances. It was constructed off-site to minimize disturbance to the community and surrounding businesses and are sustainably designed with the area in mind. Large roof decks offer 180 degree views to the water from the channel to the North to the Pacific to the West.


Assembly process
Floor plans
About R&S Tavares Associates
About Champion Home Builders

Project: Three on Abbott
Builders: R&S Tavares Associates, Inc.
                Champion Home Builders
Area: 840 sqf
Bedrooms: 2
Full baths: 3
Year: 2016
Location: San Diego, California
Photos: Pacific Video Productions

Description from R&S Tavares Associates

R&S Tavares Associates, Inc., brings contemporary prefab living to Ocean Beach, a charming beach community close to San Diego's downtown. The project was an effort of Pedro Tavares who started researching the project while attending Woodbury University's Master of Real Estate Development for Architects program in San Diego, headed by Ted Smith, Jonathan Segal, Lloyd Russell, Brett Farrow and Mike Burnett, giants in the San Diego Architect as Developer model. The project was first explored as part of their thesis in that program and continued past graduation where Pedro and a colleague designed, permitted and completed the project as owner-builders.

R&S Tavares Associates, a design and consulting company started by Ralph and Silvana Tavares, also partners in the project, performed the engineering and authored the construction documents for the project. Ralph and Silvana are the country's foremost experts in Modular/Prefabricated building technologies, having worked for various manufacturers throughout the United States since 1987 and branching off on their own in 2000, they have been directly responsible for the design and engineering of thousands of modular projects worldwide from "tiny homes," 100,000+ square foot hospitals and award winning projects such as RADLAB's Quartyard project in San Diego which received a people's choice orchid and Studio E's High Tech High in Chula Vista which won an AIA COTE award. Ralph holds professional Engineering licenses in 42 states currently and Silvana is a New York licensed Architect.





Manufactured and shipped from Champion Home Builders in Corona, CA, the homes were built under extremely rigid constraints imposed by local zoning. They are about 840 square feet each, a block from Dog Beach in Ocean Beach, San Diego. They feature floor to ceiling heights of 13'-0", and are very unique in terms of modular structures in that they contain balloon-framed loft spaces within and overall total module heights of 15'-0" (4.5 meters), utilizing special trailers to keep their overall shipping height under the 17 foot special permit restriction in California. A large roof deck with panoramic views of the water is accessible in each house. Portuguese cobblestone from Porto, Portugal was imported to the Port of Los Angeles along with three Portuguese master masons to create the Copacabana Boardwalk pattern on the driveways by Roc2C.

On-site construction started April 25, 2016 and production of the modules started May 9th. The project was set in one day by Nick Rocco of Rocco Enterprises on May 26th, ahead of schedule to comply with the City of San Diego's Coastal Construction Moratorium which would have not allowed for a crane to be set in the road past Memorial Day.

Prefab Modular Homes by MIMA





MIMA Light - Small Prefab House



MIMA Light floor plans
MIMA Light video

What does it take to own a home? MIMA Light shows that a construction site, 22 weeks time and € 20,000 can already be enough. The idea of ​​a small house, customizable in size and features, is as simple as it is ingenious. The result is a functional design sculpture that also withstands a look behind the façade.

It takes just 22 weeks from personal design, through production and construction, to your own dream home. Whether on the shores of a lake or in the mountains, the basic concept is adaptable and adapts to local conditions. Individual foundation solutions range from concrete floor slabs or supports to special wood foundations. The wooden small modular house has short construction period due to modular system of building elements. At the construction site, the prefabricated modules are only assembled.

For the design of the small units MIMA was inspired by different artists. The sculptural cube seems to float above the ground. It owes this impression to an all-round mirrored pedestal. The other materials shine with noble restraint: Noble metal coating or simple color, every owner can give a MIMA Light a personal touch.





Depending on the customer's requirements, 1.2 meter modules will give a total length between seven and eleven, with a fixed height and width of 3 meters. This results in floor areas of 21 m2 for the smallest, and almost 33 m2 for the largest unit. The individual modules are clearly visible to the outside and act like chain links. A flat roof and internal gutters complete the pure geometry.

The interior is also reserved. Floor and walls made of plywood boards ground the innovative project. While large glass fronts provide a friendly ambience on the front side, it is also possible to make individual façade modules as glass surfaces. Depending on the location, for example in extremely warm conditions, the glass is made thicker and with higher level of protection.

Not only architectural design, but also energy technology puts a lot in this small prefab house. Solar panels are used for the electric boiler, which guarantees the hot water supply.

Kitchen and bathroom form a compact module that can be placed centrally or at one end of the MIMA Light small prefab house. Their position is decisive for the shape of living room and bedroom.

The compact home opens up new perspectives in tourism as well as in the holiday home market and with prices between € 20,000 and € 40,000 is not only affordable for high earners.

Small Prefab Floating Home by KODA





KODA Light Float integrates the small prefab house in floating pontoons enabling extended waterfront properties


About KODA
About TopMarine OÜ

The KODA Light Float opens up the opportunity of using urban or countryside waterfront space. The architecture, design and engineering skills combined enable living near a favourite yacht harbour, on a private lake or on an urban canal.

The versatility of prefab modular housing concept makes the KODA Light Float either a harbour café, artist’s studio, not to mention a summer retreat or a fisherman’s dream.

With its spacious comfort and high ceilings, the fully equipped small prefab floating home has a facade-sized illuminating window. The floating KODA house gives an atmosphere of a mediterranean villa.

Sustainably finished with plywood inside, the KODA Light is as minimalist as it is cosy. The floating terrace creates even more luxury space to be blend into the favourite surroundings.





KODA is a factory-built house and delivered as turnkey.

A standard equipped KODA Light includes an openspace living room, a full-size sleeping area, a shower room with toilet, a kitchen and a wooden terrace – all that on spacious, yet compact 25.8 m2.

The KODA Light has maintained its insulation and strength for year around living in heat and frost, while enabling stacking two units of its own kind on the roof.

The small prefab floating home KODA Light Float offers the opportunity of choosing the most suitable exterior finish as well as the terrace and border materials to your environment. The first being either plywood or timber, the latter offering options between spruce terrace and pine border, or larch terrace with glass border.

Technical details

Dimension of platform6.0 × 12.0 m
Floats 2pcHD Pontoon 1.07× 2.4× 12m
Freeboard with decking0.7m
Tanks 2pc3.3 m3
Weight of platform31 tons
Load capacity4.1 kN/m² (30 tons)
Allowed max wave height0.3m
Allowed current speed1 m/sec
Allowed ice conditionAllowed static ice load, ice moving is not allowed
Massca. 10 tons
Net area25.8 sqm / 277.7 sqft
Area of building perimetre28.8 sqm / 310.0 sqft
External dimensionsL 7226 mm / 23.7 ft
W 3930 mm / 12.9 ft
H 3990 mm / 13.1 ft
Internal dimensionsL 5858 mm / 19.2 ft
W 3416 mm / 11.2 ft
H 3323 mm / 10.9 ft





Structural

Timber frame structure
Mineral wool layer of insulation
200 mm/0.66 ft in walls; 250 mm/0.82 ft in ceiling and floor
Three-ply tempered glass
Snow load 400 kg / sqm
Interior finish plywood 12 mm / 0.039 ft
Exterior finish timber cladding or plywood

Engineering

Electric floor heating
80 l electric boiler
VENTS ventilation system
Water connection DN15
Sewage connection 110mm / 0.36 ft
Electrical connection 20A 3F

Modern German Modular Buildings - Prefab Homes and Offices





The 14 x 10.50 m building consists of five modules. Walls and ceilings were made with wooden surfaces and additionally covered with HPL panels in the wet area. The façade consists of HPL panels. As insulating material wood fiber insulation materials were used. Advantage of the solid wood construction: With the same thermal insulation, the walls can be constructed 6 cm thinner.
Modular Homes
Modular Offices
About Russ Holzbau und Technik

In a time of constant change, the creation of modular building units is becoming increasingly important. Modules from Russ Holzbau und Technik offer growing space as an optimal solution for changing needs. The modular building surfaces are adapted to the respective needs by extending or reducing additional modules.

Regardless of where you are, you can also stay flexible: whether it's a living module, office module, parterre module or back-up module, you can work and live wherever you want. And if you change your location or place of residence, then take your module with you.





Further you will find individual building solutions for offices, residential buildings and sales rooms of Russ Holzbau & Technik.


Airport Lounge Modular Construction at Berlin Tegel Airport






Passengers at Terminal C of the airport Berlin-Tegel have access to a new lounge. The special feature: the three-storey modular building was built from steel modules by Cramo Adapteo in just six weeks of night installation. The fronts of the modules are glazed over a large area, underlining the cuboidal structure of the serial elements, while the lounges offer generous views.


About Cramo Adapteo

Manufacturer: Cramo Adapteo
Product: Steel modules
Building: Airport Lounge
Location: Berlin Tegel Airport
Year: 2017

The new lounge at Terminal C of Berlin's Tegel Airport, which is close to the city center, proves that modular construction is suitable for functional and fast building projects, yet not neglecting design and comfort. Cramo Adapteo, part of the Finnish Cramo Group, placed its prefabricated modules on the apron of the terminal in just six weeks. Since the erection had to take place during the running of the airport, the assembly could only take place at night. To the outside, the building retains a functional character that matches the context, to which the modular design is clearly assigned. The steel construction of each element is visible on the façade, because the individual structures optionally frame large-area glazing and the rooms behind, or outdoor spaces and access area.

From the inside, the glass fronts allow for sweeping views. The lounge areas themselves are designed to meet comfort and service requirements for stays between flights. On the ground floor of the three-storey terminal building there is a reception area and a dining area. In addition to dining tables and chairs, work tables are also available, each equipped with sockets. On the second level comfortable seats were placed directly in front of the panoramic glazing, so that the handling of the aircraft can be observed in the first row. On the third floor is a smoking lounge with ventilation system. The exit to a roof terrace is also possible here, from where takeoffs and landings of the aircraft can be experienced in a more exposed position.





In addition to the transparent interface, which can be shaded by centrally controlled blinds, a generous sense of space is generated with a clear ceiling height of 2.75 m and partially half-height interior walls. Circumferential LED strips at the connection to the ceiling contour and stage the volume. The designed as heating and cooling ceiling space closure ensures the appropriate air conditioning, the supply takes over an air-water pump with MSR technology. Part of the security concept is an escape staircase, fire protection measures, emergency lighting and door monitoring.

Modular Multi-Storey Apartment Building in Bochum, Germany






About Koschany + Zimmer Architects KZA
About ALHO

Client: VonoviaSE
Architects: Koschany + Zimmer Architects KZA
Year: 2018

The close cooperation of a modular construction company, a housing association and an architectural firm is due to the construction of several residential modular multi-storey apartment buildings on the modular principle and in steel modular construction. In a relaxed urban planning arrangement on a newly developed, inner-city plot in Bochum, for example, three Point houses were created, which want to contradict the uniform appearance and repetitive, shapeless image of serial construction.

The Essen-based office Koschany + Zimmer Architekten KZA dealt with the modular construction at an early stage. After a first project in Dortmund, which the architects developed together with the system construction company Alho from Friesenhagen, the cooperation was continued in Bochum. On behalf of the housing company Vonovia, three 4-storey Point houses in the midst of generously designed open spaces were realized. The participants regard the applied modular principle as advantageous for the housing industry as well as for architects and planners.





Planning from the inside out

The Modular Housing Kit developed by KZA and Alho consists of individual module types. These include, for example, a living room and a kitchen, a bedroom with a hallway or a nursery plus a bathroom. From this matrix - a canon of different modules - the apartments are custom-made for the respective location and according to the desired apartment key. Afterwards, the house is created out of this individual mix of apartments. "Normally, architects tend to work in the opposite direction - from outside to inside: there is an urban planning situation from which the building is conceived in its cubature and fitted with floor plans developed from it," explains architect Axel Koschany. "Modular construction is the other way around. It starts with elaborate floor plans - in the end the most important thing for the future residents. Even the most similar apartment types are almost never forced into one and the same cubature due to the different local specifications."

Diversity in modular design and layout

For example, three modular houses, each with 14 residential units, were built in Kaulbachstraße in Bochum in the course of an inner-city rehabilitation measure. As an urban development reaction to the adjacent to the north side 2- and 3-storey neighboring buildings was staggered in coordination with the city. The mezzanine floor jumps back 3 meters on the 4th floor and creates spacious roof terraces. The return could be agreed with the modular design, since this only one module had to be omitted. The systematics of the modular structure remained otherwise unchanged.

The modules are on 17 x 19 m base and 12.5 m high, with 7 one-room, 3 two-room, 2 three-room and 2 four-room apartments, user requirements are covered. The apartments are designed throughout to be barrier-free and wheelchair-friendly. The buildings are centrally accessed via a single-flight staircase and lift system. All apartments on the 1st and 2nd floor have prefabricated balconies, and the apartments on the 3rd floor have rooftop terraces. Arrangement of freestanding Point Houses ensures a varied appearance. The funnel-shaped outer space zones leave room for differently designed open spaces. Green tenants' gardens, playgrounds and other dwellings are planned here.

Profitability factor of prefabrication

Each building consists of 43 room modules. These were manufactured at Alho plant for seven weeks and under ongoing quality controls. At the construction site, the modules were ultimately assembled in seven days per house. The entire construction period of the three modular buildings was - after the ground was prepared - 20 weeks.

"The modular construction can always exploit its advantages if the structural units that are as constant as possible are repeated. That's why we talk about serial modular construction. So that these module types are not built into uniform houses, we work together with architects like KZA. They bring creative input by playing with the building blocks and exploiting their potential in terms of design," explains Michael Lauer, architect at the multi-storey building competence center at Alho.

The projects in Dortmund and Bochum are the first of a series of residential construction projects that will be completed with the developed modular system later this year. The project partners are planning to further optimize the system and to expand new components, such as new module units.

Diversity in modular construction

In Bochum, an exemplary modular construction project proves that series and individuality are not mutually exclusive. On a newly developed, inner-city plot, three modular Point Houses have been created with a loose, urban arrangement and a staggered cubature.

As one of the first manufacturers of prefab modular buildings in steel module construction, ALHO offers sophisticated solutions in multi-storey housing construction. For the housing company VONOVIA, the company is currently (2018) realizing a series of residential buildings based on a modular system. The concept was developed together with Koschany + Zimmer Architekten KZA from Essen. Instead of developing the building out of the urban situation, the process of serial construction begins with the smallest scalable serial element, the module. Depending on the room requirement, these individual elements are put together individually. This is how well-designed floor plans and a large range of cubatures are created with modular prefab units.

The ensemble of the three Point Houses is already the second housing project that was realized together with KZA. It was created in the course of an urban development densification in Bochum. The buildings are four-storeyed and offer space for 14 continuously accessible housing units of different sizes. There is no basement, but all apartments have a sufficiently large storage room and on each ground floor a technology module is arranged. Overall, the Point Houses are made up of 43 room modules. They were manufactured in the factory within seven weeks under strict quality controls at ALHO and installed at the construction site per house within seven days. The total construction time of the three buildings was just under 20 weeks after the ground was prepared with the floor slab.

Contrary to popular belief that modular buildings are boring, the architects were able to make the three residential buildings in Bochum exciting: With the fourth floor projecting back, the design responds to the two- and three-storey neighboring buildings adjoining the north side. At the same time, the staggering of the building cubatures visually revives the facades. In terms of urban planning, the arrangement of the Point Houses, which is rotated towards each other, creates a sense of relaxation: funnel-shaped interspaces that provide space for differently designed recreational areas - from green tenants' gardens to varied playgrounds.